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SUMMARY

This paper is devoted to a brief review of some problems arising in the NEPTUNE project, whose main
objective consists in preparing a new generation of two-phase flow codes covering the whole range of
modelling scales for nuclear power plants. Focus is given on multi-phase flow modelling and on the
unsteady coupling of existing codes. Some recent results are displayed and a few open problems are
discussed in the manuscript. A draft version of this paper has been presented as an invited lecture during
the FVCA4 meeting. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The NEPTUNE Project gathers some of the efforts of CEA and EDF in terms of Research and
Development programs (see [1]). It aims at building the next generation of water–vapour two-phase
flow codes for nuclear energy applications. It should allow real-time simulation using the system
scale, but also perform multi-scale three-dimensional computations. Three main work packages
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arise:

• A first one is dedicated to software development.
• A second one benefits from physical investigations [2] and numerical research investigations.
• A third one is devoted to two-phase flow metrology, physical experiments and advanced

instrumentation techniques [3].
The paper [1] gives a precise review of the whole project including software developments, and
the reader is also referred to [2, 3] for additional information.

Numerical methods are obviously part of the long-term research programme, and should not only
support software developers, but also provide new ideas and methods to improve our understanding
of multi-phase flows. This paper intends to describe some of these. Actually, some of the numerical
problems arising in the NEPTUNE project concern the establishment of sets of partial differential
equations which may account in an expected meaningful and relevant way for multi-phase flows.
The second main issue concerns the numerical simulation of these systems, including the coupling
of new or existing codes.

Though finite volume methods [4] are the keystone of almost all NEPTUNE developments,
some methods rely on the use of finite element approach, or alternatively on the finite volume
element approach. In Section 2, we will give a very brief overview of some recent achievements
in numerical methods. Then we will focus on the modelling of multiphase flows in Section 3.
In Section 4, we will discuss some open questions and recent advances related to the unsteady
coupling of codes in a finite volume framework.

2. A BRIEF REVIEW OF SOME CURRENT NUMERICAL ACTIVITIES

2.1. Direct numerical simulation of two-phase flows

First, we would like to mention the original work on the modelling of interfaces reported in [5–10].
It is grounded on an original approach which is consistent with thermodynamical concepts. The
mean density, the liquid mass fraction, the mean velocity, the local pressure and the position of
the interface are computed with help of a five-equation hyperbolic model, which possess a quasi-
conservative form. Suitable upwinding techniques are used to provide approximations of solutions
on colocated meshes. This work not only examines the problem of the handling of pure convective
effects, but it also investigates the closure and the approximation of interfacial mass transfer,
which is achieved in agreement with an entropy inequality. This approach is clearly related to the
direct numerical simulation strategy, and aims at getting rid of any averaging process, in order to
provide a precise prediction of the local behaviour in some extreme situations, including the boiling
crisis topic. We refer to the papers mentioned above which provide a detailed investigation of the
topics.

2.2. Finite volume approximations of standard two-fluid models

A second contribution concerns the numerical approximation of standard two-fluid models, which
rely on the single-pressure assumption. The six governing equations for these two-fluid models
correspond to the mass balance equations, the momentum equations and the total energy balance
equations within each phase. This approach is rather widespread, at least when one focuses on
gas–particle flows. It requires to develop codes in order to compute approximations of solutions of
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sets of equations, the convective part of which is not necessarily hyperbolic. These models usually
contain some modifications of momentum equations, which contribute to enlarge the hyperbolicity
domain. Another specific feature is that these sets of partial differential equation (PDE) include
first-order non-conservative contributions, which render their numerical simulation rather tricky.
Thus, the use of well-known approximate Riemann solvers, such as the Roe scheme, cannot be
straightforward, and requires to specify modifications in order to account for possible entrance
in ‘time-elliptic regions’, but also to cope with non-conservative contributions. Some numerical
strategies involving finite volume approximations on unstructured meshes have been proposed
quite recently, and a great effort is done in order to validate the whole approach, while including
refined physical models such as the MUSIG (multisize group) model for instance (see among
others [11–13]).

2.3. Numerical algorithms to account for complex equations of state

Another contribution has been devoted to the numerical approximation of homogeneous two-phase
flow models. Owing to the fact that we deal with nuclear applications in pressurized power reactors,
there is an urgent need for specific algorithms to compute Euler-type models with complex equation
of state (EOS). Actually, water–vapour tabulations require that one might compute complex EOS
in homogeneous codes. The work [14] precisely suggests some unified framework to achieve
that. It shows that some classes of EOS enable the use of suitable interface Riemann solvers,
while retaining the standard conservative approach for mass, momentum and energy balances.
Besides, it details how to cope with other EOS which do not belong to the latter class, in order
to maintain particular patterns such as moving contact discontinuities, by computing a modified
discrete pressure field. It also clearly indicates whether one may expect to obtain convergence
towards the true shock solution or not, depending on the class of EOS. It eventually suggests
hybrid techniques in order to ensure convergence towards the correct solution, when shocks and
contact discontinuities are present in the solution, while achieving a reasonable error on coarse
meshes in any case.

2.4. Computation of low Mach number flows

Once again, the mean flow in standard situations in the nuclear power plant coolant circuit looks
like a single-phase water flow. Thus, the local Mach number is small, and therefore conservative
upwinding approximate Riemann solvers sometimes lead to a poor accuracy on coarse meshes. This
has motivated the development of preconditioning techniques for low Mach number applications,
which are indeed useful for practical steady situations (see [15]). Besides, the standard problem
of linear algebra preconditioning still needs to be addressed, especially for the GENEPI code and
other codes which rely on classical projection techniques (see [16–18]).

2.5. Fictitious domain methods and other techniques

Another important contribution [19], which addresses the capabilities of finite volume element
techniques to handle accurate approximations of two-fluid models, is based on the early contribution
[20] which focused on Navier–Stokes equations. Another research direction pertains to the use
of fictitious domain methods, which might represent an alternative accurate way to account for
complex geometries, on the basis of simple structured codes (see [21–26]). The last research
domain concerns the improvement of unstructured finite volume codes on colocated meshes [27].
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We now will focus on the modelling of multi-phase flows and afterwards on the interfacial
coupling of unsteady codes.

3. NUMERICAL MODELLING OF MULTI-PHASE FLOWS

3.1. Simulation of two-fluid models

One of the main problems arising in the numerical modelling of two-phase flows is that sets of
PDE which are expected to represent main patterns of such flows are still not clearly identified
or may suffer from severe drawbacks. This is particularly clear when focusing on the so-called
two-fluid approach. Associated six-equation single-pressure models account for mass conservation,
momentum and total phase energy balance within each phase. Everyone is aware of the potential loss
of hyperbolicity of standard single-pressure two-fluid models in some areas, which unfortunately
may easily arise, even for (expected so) simple sets of initial values, such as those described in
[28]. This main drawback seems to be closely linked with the assumption of local instantaneous
pressure equilibrium. It seems that the blow up of codes may be quite easily postponed when
applying for upwinding techniques, and restricting to coarse meshes. Nonetheless, even when drag
effects are accounted for, it may be easily checked that the inner stabilization of the latter schemes
is no longer sufficient on very fine meshes (see [29], for instance).

This has led some workers to reexamine ‘father’ models known as two-fluid two-pressure
models, following the pioneering work of Baer and Nunziato [30], Kapila et al. [31], Gavrilyuk
et al. [32], Gavrilyuk and Gouin [33]. These benefit from classical properties, in the sense that: (i)
the convective subset is hyperbolic for any physically relevant choice of the state variable; (ii) the
whole set may be controlled by an entropy inequality for regular solutions, which meets agreement
with true source terms and viscous terms. Under the constraint: �1 + �2 = 1, the basic form of the
governing set of equations is the following (for k = 1, 2):

��k
�t

+UI
��k
�x

= �(Pk − P3−k)(Pk + P3−k)
−1 (1)

��k�k
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+ ��k�kUk
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��k�kUk

�t
+ ��k(�k(Uk)
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��k
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+ �(�kUk(Ek + Pk))

�x
+ PI

��k
�t

= −�(mkm3−k)
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Where �k , �k , mk = �k�k , Uk , Ek = �kek(�k, Pk) + �kU
2
k /2, ek(�k, Pk) and Pk , respectively,

stand for the void fraction, the mean density, the partial mass, the mean velocity, the total energy,
the internal energy and the local pressure within phase k (for k = 1, 2). The problem of the closure
of non-conservative products may even be circumvented for some specific choices of the interfacial
velocity UI and of the interfacial pressure PI (see [34]). If we set

UI = �U1 + (1 − �)U2 (5)
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we know that admissible forms of the interfacial velocity are UI =U1 or UI =U2 or alternatively:

UI = (m1U1 + m2U2)

(m1 + m2)
(6)

The latter three correspond to �= 1, �= 0, and � =m1/(m1 + m2). Hence, the correct definition
of PI will be

PI = �P1 + (1 − �)P2

with

�= a1(1 − �)/(a1(1 − �) + a2�) (7)

and

ak = �Log(sk(�k, Pk))
�Pk

/
�ek(�k, Pk)

�Pk
(8)

One or two-equation turbulence closures may be included, without breaking the keen wave
structure (see, for instance, [35–37]). We, however, emphasize that the problem of existence and
uniqueness of the solution of the 1D Riemann problem is still an open topic, mainly due to the
great complexity of the wave structure, and to the possible resonance phenomenon, which seems to
forbid uniqueness of solutions, unless some consistent criteria is added. Some preliminary results
are available in [34, 38].

Straightforward upwinding techniques can be easily implemented, which provide reasonable
numerical results (see [34]). Among these, both the Rusanov scheme and the approxi-
mate Godunov schemes introduced in [39] have been examined. Other numerical techniques
have been recently proposed (see [40]). An essential point to quote is that converged solutions do
not depend on schemes though non-conservative products are present in the governing equations
for mass, momentum and energy. This point is clearly examined in [41]. Due to the (six or) seven
distinct eigenvalues, some of them being close to one another, intermediate states in the solution
of the 1D Riemann problem can hardly be distinguished in some situations, unless one considers
a huge mesh refinement, which can hardly be afforded when turning to 3D flow simulations.

Another problem immediately occurs in this framework: is there some way to deal with both
standard single-pressure two-fluid models and these two-pressure hyperbolic models? Based on
recent work pertaining to relaxation methods, the temptation is great to take advantage of the
‘father–son’ structure of the couple of models. Following [7, 42–44], one may for instance compute
the six-equation single-pressure model considering two steps as follows:

(i) a first evolution step, which computes some approximation of solutions of the IVP problem
connected with the hyperbolic seven-equation two-pressure model,

(ii) an instantaneous relaxation step which locally equilibrates both pressure fields at the end of
each time step.

Obviously, the input of (i) is the output of (ii), which guarantees a pressure equilibrium. The HAT
(hybrid alternative tool) algorithm enjoys rather interesting properties. The whole scheme identifies
with the one in [34], when the inverse of the pressure relaxation time � remains bounded. The
spirit is almost the same as the one from [28], and we also underline that the numerical treatment
of step (ii) is exactly the same, and provides consistent approximations of the mean pressure field.
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Figure 1. Relative velocity Ur (plain line) and a translation of the void fraction profile (�1 − �1(x, t = 0))
(dashed line) when computing approximations of solutions, using the initial value problem given in [28].
On the basis of the two-pressure approach, the relaxation technique enables to compute approximations of
the two-fluid single-pressure model which accounts for drag source terms. The bubble diameter is equal

to d = 10−3. The present mesh contains 250 000 cells.

It might represent some possible way to tune models through the next coming years (see [45]). It
also seems an appealing way to provide meaningful boundary conditions in six-equation two-fluid
models.

Results: We show in [37] some approximations of the solution of a Riemann problem using a
turbulent closure within each phase. The structure of the density fields, the velocity fields, and
the modified pressure fields (�k = Pk + 2Kk/3) is displayed. One may also refer to [37] which
examines from a practical point of view the influence of the couple (UI, PI) on the computational
results on very fine grids (and thus the true influence of this closure). This is quite interesting due
to the fact that some authors might prefer to use one specific closure.

Figure 1 shows the behaviour of the void fraction (�1 − 0.25) when computing approximate
solutions of a standard two-fluid model with a relaxation method on a very fine mesh (250 000
cells). This latter result issues from [29]. The initial conditions are the following (see [28]):

U1(x, t = 0) =U2(x, t = 0) = 0

�1(x, t = 0) = 0.25

h1(x, t = 0) = 3.093× 106

P(x<0.5, t = 0) = 2× 107 and P(x>0.5, t = 0) = 1.5× 107

h2(x<0.5, t = 0) = 1.35× 106 and h2(x>0.5, t = 0) = 2.35× 106

(9)
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Though a Rusanov scheme has been used to compute convective fluxes, which ensures that the
discrete cell values of the void fraction �1 remain positive and smaller than 1, the code blows up
on a finer mesh including 400 000 cells, due to the occurrence of a non-zero imaginary part in
eigenvalues. This means that the relaxation procedure is able to retrieve structural deficiencies of
the standard two-fluid model, when it enters a time-elliptic region that renders the initial value
problem ill posed. Similar numerical experiments with a far less diffusive scheme such as the one
introduced in [39] lead to a blow up on coarser grids (see [41]).

3.2. A new class of hyperbolic three-field models

Some specific applications in the nuclear energy require considering a mixture of liquid droplets
in a continuum of vapour surrounded by a continuous liquid phase. The expected velocity of
droplets inside the gas phase is clearly different from the local gas velocity. This is referred to
as a three-field pattern in the nuclear community, and emerging ideas seem to retain an alterna-
tive way to tackle this problem, which consists in the modelling of three-phase flows. We may
choose this approach, but a straightforward consequence is that the potential lack of hyperbol-
icity obviously arises once more. An obvious idea is to mimic the two-fluid approach discussed
above, and thus constructing hyperbolic three-phase models. A first attempt is sketched in [46],
the basics of which are recalled below. Using obvious notations, the governing set of equations
reads:

�1 + �2 + �3 = 1 (10)

��k
�t

+UI
��k
�x

= �k (11)

��k�k
�t

+ ��k�kUk

�x
= 0 (12)

��k�kUk

�t
+ ��k(�kU

2
k + Pk)

�x
+

3∑
l=1,l �=k

Pkl
��l
�x

= SUk (13)

��k Ek

�t
+ ��kUk(Ek + Pk)

�x
−

3∑
l=1,l �=k

Pkl
��l
�t

=UISUk (14)

together with: Ek = �kek(�k, Pk)+�kU
2
k /2. The momentum interfacial transfer terms cancel when

being summed up, thus:

SU1(W ) + SU2(W ) + SU3(W ) = 0 (15)

A similar remark holds for unknown functions �k :

�1 + �2 + �3 = 0 (16)

and for Pkl contributions:

P12 + P32 = P13 + P23 = P21 + P31 (17)
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If one focuses on the counterpart of the Baer–Nunziato model, thus setting UI =U1, this will
result in the unique choice:

P13 = P31 = P32 = P3 (18)

P12 = P21 = P23 = P2 (19)

and therefore:

SUk (W ) =mk	k(W )(U1 −Uk) (20)

for k = 2, 3, assuming positive values for 	k(W ), but also:

�2 = �2( f1−2(W )�1(P2 − P1) + f2−3(W )�3(P2 − P3))/(|P1| + |P2| + |P3|) (21)

�3 = �3( f1−3(W )�1(P3 − P1) + f2−3(W )�2(P3 − P2))/(|P1| + |P2| + |P3|) (22)

The frequencies fk−l(W ) should remain bounded. As occurs when focusing on two-phase flows,
the closure UI =U1 provides a meaningful framework in terms of closure of non-conservative
products. This is due to the fact that the field corresponding to � =UI turns to be a linearly
degenerated field when defining UI =U1. One can note that in this particular case, the model looks
like the counterpart of the Baer–Nunziatto model [30].

Moreover, the average ‘mixture’ velocity:

UI =
∑

k (mkUk)∑
k (mk)

(23)

also makes sense in this particular framework, as soon as Pkl interface pressures are adapted in
consequence (see [46]). This extends in a straightforward way results of [34, 47].

We eventually emphasize that admissible forms of interfacial mass, energy and momentum trans-
fer terms—that is forms which are consistent with the overall entropy inequality—slightly differ
from the two-phase counterpart (see [48]). The whole approach provides a hyperbolic framework
to tackle three-phase flows, and the results seem to confirm that the resonance phenomena is the
only barrier remaining before solving the one dimensional Riemann problem. This first attempt
obviously requires deeper investigations.

This approach can also be useful to compute approximations of single-pressure models with
help of relaxation techniques, at least when EOS are simple enough, and of course restricting to
coarse enough meshes (see [29]).

Results: We show in Figure 2 the structure of the pressure fields when computing a Riemann
problem, while neglecting drag terms. We use here a mesh with 104 regular cells to describe the
computational domain [−0.5, 0.5]. The time step is in agreement with the Courant–Friedrichs–
Lewy (CFL) condition CFL= 0.49. The three phases are at rest and share the same pressure on
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Figure 2. Behaviour of P1, P2, P3 when computing a standard Riemann problem (hyperbolic three-phase
flow model), using the interface velocityUI =U1. The three pressures vary through the contact discontinuity
�=U1 which supports the unique void fraction discontinuity. The mesh contains 10 000 cells, and the
domain is [−0.5, 0.5]. A non-conservative version of the Rusanov scheme was used for this test case.

The CFL number has been set to 0.49.

each side of the membrane before the beginning of the computation:

U1(x, t = 0) =U2(x, t = 0) =U3(x, t = 0)= 0

�1(x, t = 0) = 0.25

P1(x<0, t = 0) = P2(x<0, t = 0)= P3(x<0, t = 0) = 105

P1(x>0, t = 0) = P2(x>0, t = 0)= P3(x>0, t = 0) = 104

�2(x<0, t = 0) = 0.4 and �3(x<0, t = 0) = 0.5

�2(x>0, t = 0) = 0.5 and �3(x>0, t = 0) = 0.4

�1(x<0, t = 0) = �2(x<0, t = 0) = �3(x<0, t = 0) = 1

�1(x>0, t = 0) = �2(x>0, t = 0) = �3(x>0, t = 0) = 0.125

(24)

EOS in each phase correspond to perfect gas EOS, where 
1 = 7
5 , 
2 = 1.005, 
3 = 1.001. One can

note that all pressures vary through the contact wave associated with � = U1, as expected (see
[46, 48]). Once again, the great number of intermediate states urges the need for very accurate
solvers in order to perform computations on rather coarse meshes.
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4. THE COUPLING OF UNSTEADY CODES

There is nowadays a true need for coupling techniques in order to cope with industrial applica-
tions using current codes. This occurs for instance when computing the whole primary coolant
circuit of the pressurized power reactor with help of different codes, for instance 3D codes (such
as FLICA IV, THYC, etc.), which rely on the homogeneous approach to describe the core, and
1D codes (such as CATHARE, etc.), which apply for the standard two-fluid approach to de-
scribe patterns in pipes. No tools have been prepared for that purpose over the last years, and
some simple—even steady—simulations which require some coupling have already exhibited
major deficiencies. The NEPTUNE project team has decided to give special emphasis on that
topic. It is also expected that this work will also contribute to extend our understanding of sole
systems.

The main goal is to cope with the interfacial coupling of the system scale, the component
scale and the local 3D computational fluid dynamics (CFD) scale. The basic strategy up to now
consists in decoupling all effects, and then focusing on specific problems. We refer to [49] which
synthesizes the needs, basic ideas and elementary tools available from the literature, whenever one
considers the scalar case or the system case (see [50, 51]). We rather quickly detail below some of
the recent achievements in that work package, and some ongoing work. The reader is invited to
read [52–54] and related papers. A first attempt to couple a two-fluid model and an homogeneous
model is described in [55].

4.1. Well-balanced schemes versus fractional step methods

Multi-phase CFD codes provide approximations of PDE which basically rely on contributions
which account for convective effects and source terms (mass, energy and momentum inter-
facial transfer). The coupling of two codes will thus involve two sets of PDEs with differ-
ent time scales (time scales associated with flashing phenomena, condensation or drag effects
are indeed quite different!). Even before achieving any coupling, one may obviously wonder
how numerical methods will deal with the whole. Thus, an obvious question is: what is the
true accuracy of ‘standard’ discretizations when aiming at computing hyperbolic systems with
source terms, especially when highly unsteady patterns travel through the interface between
these codes? An elementary investigation has been performed, considering the same set of equa-
tions on both sides of the interface, while focusing on two rather classical classes: (i) frac-
tional step methods FSMs), which treat separately convection and sources and (ii) well-balanced
schemes ([56], noted WBS afterwards) which have been designed to get accurate approximations
of steady states on coarse meshes. This work is discussed in detail in [57], where the model
problem is

��

�t
+ �(�U )

�x
= 0 (25)

���

�t
+ �(��U )

�x
= �S(�, �, �) (26)

��U

�t
+ �(�U 2 + P(�))

�x
= 0 (27)
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Figure 3. A comparison of the first well-balanced scheme (circles) and the second well-balanced scheme
(stars) with the fractional step method (FSM). The mesh contains 100 cells. The relaxation time in the

mass transfer term is � = 0.0001. The parameter h/U� is not small compared with 1.

Where �,U, �, respectively, stand for the mean density, the mean velocity of the mixture of
water and vapour, and the vapour concentration, and P ′(�)>0. The simple form of the source term
S(�, �, �) which contains a time scale � which may be tuned, enables to carry on analytical work.
In some situations, both explicit schemes FSM and WBS compare quite well, but when the time
scale � becomes too small, results are much in favour of the fractional step approach, even if the
latter does not seem to be the ultimate approach.

Results: We show in Figure 3 some computational results which correspond to a Riemann
problem including a left-going rarefaction wave and a right-going shock wave. The mesh contains
100 cells. The initial conditions are the following:

U (x, t = 0) = 10

�(x<0.5, t = 0) = 1 and �(x>0.5, t = 0) = 0.6

�(x<0.5, t = 0) = 1 and �(x>0.5, t = 0) = 0.5

(28)

It clearly arises here that for this magnitude of � = 10−4, the FSM performs better than the two
different WBS. The solid line in Figure 3 corresponds to the FSM, the circles refer to the standard
WBS [56], and the stars correspond to the modified WBS which takes benefit from the particular
form of the governing equations (see [57]). The solid line is here indeed close to the exact solution
which reads:

�(x, t) = aL(t) if x<U1t

�(x, t) = aR(t) if x>U1t
(29)
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where U1 stands for the speed of the contact discontinuity, and where aL ,R(t) denotes the solution
of the ordinary differential equation:

��

�t
= S(�, �, �) = 1/2 − �

�

We emphasize that the low Mach number regions contribute to the loss of accuracy. Actually, an
important parameter that governs the accuracy of approximations of � for the standard WBS in
unsteady situations is h/(U�) = M−1(1+M)(�t/�)(CFL)−1. For this test case, this one is actually
not small compared with 1 (h and �t refer to the mean mesh size and the time step, respectively,
and assuming that the CFL number is close to 1). For the standard WBS, this results in a very
poor accuracy on coarse meshes such as the one considered here. Of course the three schemes
converge towards the right solution when the mesh size vanishes [57].

4.2. Free medium/porous medium

A clearly identified problem occurs when the flow of fluid in a free medium enters a porous region
(the porosity will be denoted ). We must assume that the porous formulation (on the right side
for instance) has been fixed. We start first with the set of PDE which corresponds to the isentropic
Euler equations in a regular porous region. The flow on the left-hand side is also assumed to be
governed by conservative-Euler equations. The problem now is to provide a suitable exchange
of information through the interface. One may simply suggest that a meaningful interface model
simply is the one on the right-hand side:

��

�t
+ �(�U )

�x
= 0 (30)

��U

�t
+ �(�U 2)

�x
+ 

�P(�)

�x
= 0 (31)

Since the latter enables to retrieve the set on the left-hand side. The whole also guarantees that
the mean mass flow rate (�U ) is continuous through the interface, which agrees with physical
requirements. The continuity of the second Riemann invariant of the stationary wave is nonethe-
less much more conjectural. Actually the entropy inequality only suggests that the sign of its
variation should be correlated with the sign of the mass flow rate through the interface. More-
over, a drawback immediately appears, since one expects that physical grounds should guide the
variation of this second invariant. Eventually, one may wonder whether Riemann solvers will
handle the whole process, and what the influence of the path that connects  on both sides of the
interface is.

Some attempts to handle this problem are described in [58]. This work tries to address some of
the questions above. It obviously arises that almost any interface and cell scheme will correctly treat
small variations of , but clearly not ratios of 1–0.05. This approach, which is basically influenced
by underlying ideas from [56], provides rather satisfactory results from an engineering point of
view, but it still requires improvements. A reasonable requirement is that one should at least be
able to prescribe some loss of momentum through the interface (this is currently investigated by
the working group [59]).

Results: Figure 4 shows some shock wave coming from the free medium (where it has been
formed at x = 0.4) and propagating to the right side through the ‘coupling’ interface located on
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0
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1.5e+06

Porosity 1/0.05 _ CFL=0.45 _  Effect of smoothing (3800 cells)
Inv1 _  Discontinuous (line) _  Linear (triangles) _  Parabolic (squares)

Figure 4. Second steady Riemann invariant U2/2+	(�) around the interface between the two codes. The
free and porous (= 0.05) media, respectively, stand on the left and right sides of x = 0.5. A shock wave
is coming from the left and hits this porous interface. Part of the incoming wave is reflected and part is
transmitted through the porous medium. The interface approximate Riemann solver, which relies on the
VFRoe-ncv approach, enforces the continuity of both steady Riemann invariants. The numerical solution

is in agreement with the entropy inequality.

(x = 0.5). The computational domain is [0, 1]. The regular mesh has 3800 cells, and the CFL
number is CFL= 0.45. The pressure law is P(�) = 105�3. Initial conditions are:

U (x, t = 0) = 0

�(x<0.4, 0) = 2 and �(x>0.4, 0) = 1

(x<0.5) = 1 and (x>0.5)=0.05

(32)

When the right-going shock wave that has been formed on the left side of the coupling interface
hits the coupling interface, a reflected shock wave (which travels to the left) and a transmitted
shock wave (which goes to the right) are formed. Through the coupling interface, if we set
	(�) = ∫ �

0 (P ′(a)/a) da, we expect that:

[�U ]+− = 0 (33)

[�U (U 2/2 + 	(�))]+− � 0 (34)

Though not depicted here, cell values of the mean flow rate �U through the coupling interface
are correctly represented. The jump of the second invariant U 2/2+	(�) (see Figure 4) through the
interface is in agreement with the overall entropy inequality. Moreover, the approximate solution—
on sufficiently fine meshes—does not depend on the interface path, whatever one introduces a
discontinuous path (straight line), a linear path (triangles), or a quadratic path—on a given number
of cells—(squares) to ‘smooth’ the interface separating the two codes. Similar test cases involving
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rarefaction waves which hit the interface are discussed in [58], where it is emphasized that many
approximate Riemann solvers fail at predicting the above-mentioned expected behaviour.

4.3. Flows through pipes and reactors

The coupling of the 1D CATHARE code with the 3D FLICA IV code requires providing information
(boundary conditions in fact) between a 3D code and a 1D code. In order to examine this problem,
we have first investigated the coupling of the isentropic Euler set of equations in a 1D and a 2D
framework. This has been reported in [60].

More recently, this work has been extended in order to track possible drawbacks when the total
energy equation is accounted for. For that purpose, rather than considering a true 3D medium,
we have restricted to a 2D framework, which enables us to perform hudge mesh refinements, and
thus examine the true drawbacks of coupling strategies, which cannot be afforded when using 3D
meshes.

The 2D code thus provides approximations of the following set of PDEs on the right-hand side
of the interface (say x = xint):

��

�t
+ �(�U )

�x
+ �(�V )

�y
= 0 (35)

��U

�t
+ �(�U 2 + P)

�x
+ �(�UV )

�y
= 0 (36)

��V

�t
+ �(�UV )

�x
+ �(�V 2 + P)

�y
= 0 (37)

�E2

�t
+ �(U (E2 + P))

�x
+ �(V (E2 + P))

�y
= 0 (38)

with the closure law:

E2 = �e(P, �) + �(U 2 + V 2)/2

Meanwhile, the 1D code relies on the governing set of equations:

��

�t
+ �(�U )

�x
= 0 (39)

��U

�t
+ �(�U 2 + P)

�x
= 0 (40)

�E1

�t
+ �U (E1 + P)

�x
= 0 (41)

with the EOS:

E1 = �e(P, �) + �U 2/2

For convenience, we have restricted to perfect gas EOS, that is: �e(P, �) = P/(
 − 1).
In order to define an interface model, a straightforward idea consists in using the natural

candidate corresponding to the projection along the x-axis of the 2D model (35). Nonetheless, it
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immediately appears that the latter one does not comply with the expected and necessary condition
V ((x − xint)/t = 0−) = 0. Besides, the non-conservative interface model:

�Z
�t

= 0 (42)

��

�t
+ �(�Un)

�n
= 0 (43)

��Un

�t
+ �(�U 2

n + P)

�n
= 0 (44)

�E1

�t
+ �Un(E1 + P)

�n
= 0 (45)

�U�

�t
+ ZUn

�U�

�n
= 0 (46)

(with n = x , Un =U.n and U� =U.�) obeys the different constraints.
Alternatively, one may consider the conservative interface model:

�Z
�t

= 0 (47)

��

�t
+ �(�Un)

�n
= 0 (48)

��Un

�t
+ �(�U 2

n + P)

�n
= 0 (49)

�E1

�t
+ �Un(E1 + P)

�n
= 0 (50)

��U�

�t
+ �Z�UnU�

�n
= 0 (51)

One may derive a Godunov scheme for both the non-conservative interface model and the conser-
vative interface model. The exact solution will agree with the constraint: V ((x−xint)/t = 0−) = 0.
We can also compute approximate solutions of the true 2D solution everywhere in the computational
domain while using the 2D code refining the mesh size very much.

Results: The next figure (Figure 5) shows the distribution of transverse momentum in a pipe
and a tank, using a 1D code in the pipe that is aligned with the x-axis, and a 2D code in the tank.
The coupling interface lies at the junction between the pipe and the tank (x = 0). The flow is at
rest everywhere at the beginning of the computation. An oblique shock wave, that is formed inside
the tank by means of a Riemann data, will hit the coupling interface after a while. The aim of this
computation is to maximize the mass flow rate at the coupling interface, and meanwhile to involve
great values of the tangential velocity, in order to maximize the ‘pollution’ around the interface.
The whole mesh contains around 40 000 cells. Approximate Godunov solvers are used in both
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Figure 5. The figure shows the mean y-momentum around the interface between the
two codes, along the x-axis aligned with the pipe. The 1D code and the 2D code,
respectively, stand on the left and right sides of the coupling interface x = 0. They both
compute approximations of Euler equations. The oblique shock wave has hit the cou-
pling interface. The comparison includes a computation with the 2D code used through-
out the computational domain (crosses), together with the admissible non-conservative
coupling model (circles), the admissible conservative coupling model (squares),

and the natural conservative model (stars).

codes to discretize equations. The results show a rather good agreement with results associated
with a full 2D code, when using the non-conservative approach. The conservative approach leads
to a violation of the positivity of the density when the physical time increases.

The paper [60] examines in detail the influence of the EOS (water or vapour), the influence of
the coupling model at the interface, the major role of the interface location in the pipe x = xint,
and of course the influence of the mesh size.

4.4. Some attempts to couple HEM and HRM models

We also need to investigate the coupling of expected similar models in a 1D framework. Such a case
will typically occur when coupling the homogeneous relaxation model (HRM) and a homogeneous
equilibrium model (HEM). We detail below some of the recent achievements on that topic.

We start first with the HRM model on the right side of the interface x>xint. For that purpose, we
consider that the two phases share the same velocity field U , that is Ul =Uv =U , where subscripts
l and v, respectively, refer to the liquid phase and the vapour phase. If �, P and C denote the
density of the mixture, the mean pressure and the liquid mass fraction, a source term ��(�, P,C)

which involves a positive time scale �0 is introduced in order to account for the mass transfer
between phases. Hence, the governing equations of the HRM model are:

��C

�t
+ ��CU

�x
= ��(�, P,C) (52)
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��

�t
+ ��U

�x
= 0 (53)

��U

�t
+ ��U 2 + P

�x
= 0 (54)

��E

�t
+ �U (�E + P)

�x
= 0 (55)

noting:

E = eHRM(P, �,C) + U 2

2
and eHRM(P, �,C) = hHRM(P, �,C) − P

�

It remains to prescribe the closure laws for thermodynamics:

�hHRM(P, �,C) = �Chl(P, �l) + �(1 − C)hsv(P) (56)

with:

�l = �C
1

1 − �(1 − C)�sv(P)
= C

� − (1 − C)�sv(P)

The gas is always in a saturation state, and hsv(P) and �sv(P) are given functions. We also assume
that the EOS within each pure phase are perfect gas EOS. Thus, the following relations holds:

(
 − 1)�e= P or h = �P� with � = 
/(
 − 1)

with 
>1.
On the left side of the interface x<xint, the code is assumed to compute approximations of the

HEM model, that is:

��

�t
+ ��U

�x
= 0 (57)

��U

�t
+ ��U 2 + P

�x
= 0 (58)

��E

�t
+ �U (�E + P)

�x
= 0 (59)

with

E = eHEM(P, �) + U 2

2
and eHEM(P, �) = hHEM(P, �) − P

�

and

hHEM(P, �) =Ceqhl(P, �l(P, �,Ceq)) + (1 − Ceq)h
s
v(P)

and

Ceq(P, �) = �sv(P) − �

�sv(P) − �sl (P)
(60)
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Unlike in the previous case, here the coupling method at the interface relies on the use of
relaxation techniques such as those described in [54, 61]. This is detailed in Reference [62].

Results: The following test case corresponds to the schematic 1D flow in a nuclear power plant.
The length of the pipes is 80 m. It includes a part of the coolant circuit containing the core on
the left side of the coupling interface (i.e. −40<x<0) where the governing set of equations is the
HEM model. The core is located in the interval [−22,−18]. The total length of the core is the true
core length. The core section is equal to 3.5 m2. The HRM model is used on the right side of the
coupling interface (i.e. 0<x<40). Before the beginning of the computation, the velocity, density
and pressure profiles are uniform and equal to: U = 10m s−1, � = 700 kgm−3, P = 150× 105 Pa.
Moreover, we initialize C =Ceq(P, �) in the HRM part of the coolant circuit. The heat source is
null outside the core, and we prescribe:

∫ x=−18

x=−22
�(x) dx = �0 = 3000× 106 W

inside the core region. The uniform mesh contains 500 nodes. The governing set of equations in
the left part is the set of equations of the HEM model with an equation for the total energy which
takes into account the heat source:

��E

�t
+ �U (�E + P)

�x
= �(x)
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Figure 6. The right-going shock wave before and after its interaction with the coupling interface x = 0.
Core region: −22<x< − 18, HEM code: x<0, HRM code: x>0.
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Figure 7. The right-going contact wave before and after its interaction with the coupling interface x = 0.
Core region: −22<x< − 18, HEM code: x<0, HRM code: x>0.

Results have been plotted at four distinct instants.

• At t = T1, the right shock wave, which is coming from the right side of the core, and which
is due to the sudden heating in the core region, has not hit the coupling interface yet (dashed
line in Figure 6).

• At t = T2, the same right shock wave has already moved through the coupling interface
(plain line in Figure 6). One can easily observe at t = T2 the reflected wave in the interval
[−0.25, 0], either focusing on the pressure profile, the density profile or the velocity profile.
The amplitude of this reflected wave is small compared with the one of the associated shock
wave.

• At t = T3, the right-going contact wave has still not passed the coupling interface (dashed
line in Figure 7). This contact wave is of course characterized by locally uniform pressure
and velocity profiles. At that time, the right-going shock wave has not reached the right
exit. The behaviour of the coupling interface seems almost perfect: both the HEM code
and the HRM code maintain travelling contact waves (see [14]); moreover, these waves are
correctly transmitted from the HEM domain to the HRM domain by the coupling method
(see [61]).

• At t = T4, the contact wave is on the right side of (x = 0) (plain line in Figure 7). Once
again, everything seems correct around the coupling interface (x = 0). At that time t = T4, the
right-going shock wave has gone outside the computational domain. One can of course note
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the influence of the right exit boundary which generates a reflected wave in the computational
domain. This is due to the fact that crude Neumann-type boundary conditions have been
imposed in this test case.

The impact of discrepancies in EOS formulations or tabulations is also a major problem,
since very small variations on thermodynamical coefficients may greatly change results. Actually
almost all thermodynamical approaches implemented in industrial codes differ. A straightforward
consequence is that the interfacial coupling of codes involving different EOS may pollute the whole
solution. The behaviour of expected similar EOS with arbitrary jumps of coefficients, has been
examined and reported in [52], where authors take advantage of relaxation techniques to avoid the
resonance phenomena which may occur when applying straightforwardly basic ideas relying on
the upwinding of source terms for steady situations.

5. CONCLUSION

We made a brief review of NEPTUNE project numerical investigations in this paper, while focusing
on two items:

• recent advances in mechanical and numerical modelling of multi-phase flows;
• the interfacial coupling of unsteady codes with distinct models.

Actually, the latter points are far from being mature of course, and some of the problems arising
within the second framework confirm that there is still a lot of work to do in order to improve
predictions of multi-phase flows, whenever one considers academic or industrial applications. We
tried herein to emphasize some possible weaknesses, and also focused on possible alternative
strategies in order to improve our understanding of two-phase flow models. Another research
direction, which is currently under investigation, concerns the local coupling of models and the
hybridization of two-phase flow models.

Owing to current research efforts, it urges for a better synergism between workers in the field,
keeping in mind the objective fact that computer performances will still go increasing within the
next years to come. One should also be aware that we need to propose new approaches and focus
on strategies which make sense on the continuous level. This should be achieved with a closer
collaboration between mechanicians and applied mathematicians, and European initiatives such as
[63] should be greatly encouraged.
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